3-9 April, 2017, Edinburgh University Session 2 of Introduction to numerical modelling

B IT P # Understanding subduction zone topography
through modelling of coupled shallow and deep processes

] Heat diffusion equation

J Timestep stabillity criterion

J Essential versus natural
boundary conditions
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Heat diffusion: Fourier’s law

Joseph Fourier
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Conservation of heat (energy)
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Heat conservation and Fourier’s law

0

C

dT _g(0)-q(x+Ax) -

P dt

Ax

dl
I Sl
1 dx

-

_/

ol

— =K —

ot

0

v

C

ol

7ot

0 ol
- — (k=
ax( ax)

k

if « = —— IS constant

\

\
N\

0°T

ox?

~

pC,
~_ heat
> diffusivity’



3-9 April, 2017, Edinburgh University Session 2 of Introduction to numerical modelling

From Physics to Model

1 Modelling one point/parameter through time:
n=0 timestepn n=N,
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From Physics to Model

1 Modelling N independent points through time:
n=0 timestepn n=N,
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From Physics to Model

2 Modelling N dependent points through time:

n=0 fime step n
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From Physics to Model

2 Modelling N dependent points through time:
n=0 timestepn n=N,
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Model an array of data at time ¢, rather than a bunch of independent points

Understandin, g subductio! ne topography
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Initial and boundary conditions

Initial conditions need to be provided for every grid point
(only at t=0).

Boundary conditions need to be provided for every time
step (only at first and last grid point).

T“  — —
X

initial conditions

boundary conditions
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Time derivative = finite difference

T

1
dar  T(t+An-T(t) T
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Spatial derivative - finite difference

dr T, -T. « Tl
_ i+ i 9
dx Ax

Other ways to calculate derivative:
ar _T,-T,
dx Ax
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The second-order derivative

aTn Tn+1 _Tn
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The second-order derivative
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Practical 2, part 1:

) Modelling a cooling ocean lithosphere:

2 Familiarise yourself with the model and equations using a simple
scenario and paper and pencil

2 Complete the model in Python by adding your own subfunction for
diffusion

1 Explore how numerical and analytical solutions compare and the
effect of different discretisation steps in time and space

2 If time permits, calculate the growth of the lithosphere with time

= / Understanding subduction zone topography
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Stability criterion: exp. decay function
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Stability criterion for Euler forward

dVv

0 Differential equation: " —alV
1) Discretized solution with error: V" 4+ ™" = (V" + *)(1 - aAt)
1 Subtract solution w/out error: V' =V (1-aAt)
0 Error in solution: e"" = &”(1-alr)
0 To keep error from growing: - 1<(1 - aAt) <1

. . . 2
2 This restricts time step: At < —

A
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Stability criterion

1 a=0.01
1 so At_..= 2/a = 200 sec.

crit”
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Stability criterion for Euler backward

- differential equation:

) discretized solution:

- So error in solution:

- To keep error from growing:

1 Criterion always met!
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Practical 2, Part 2

Try for yourself:

1 Use your radiogenic heating code:
0 Calculate At
O Increase t_, to 100 Gyrs
2 Try different At

1 Use your heat diffusion code:
- Increase timestep and see what happens

P # Understanding subduction zone topography
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Stability criterion for heat diffusion

- Forward Euler time stepping method:

]-;new _ ]-;old ]-;-I_lold _ 27—;01@’ n ]—;_lold
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2 So error propagates as:
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Stability criterion for heat diffusion
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Stability criterion for heat diffusion
KAt

new

old old old .
e =rg, +(-2r)e " +re with 7 =

l

0 Let’s look at 3 different error scenarios:

+
™

error —

onodal point nr —

old old old new
0 € =&, =&, sothats =¢
L old _ old _ old ld
0T & ==&, =-&, sothateg™ =(1-4r)¢’

old




Stability criterion for heat diffusion

ginew _ (1 _ 4r)€iold

Avoiding amplification: [1-4r| <1

_ 1 KAt
l.e.. -1<l-4r or r<—_ or 5
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has following stability criterion:

This is a simplified analysis.
The full Fourier analysis referred to as the
von Neumann stability criterion.
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Example cooling oceanic plate
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Example cooling oceanic plate
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Boundary conditions

Possible boundary conditions:
1. essential-, or Dirichlet boundary condition:

f=given (this is what we used so far)

2. natural-, flux-, or Neumadnn boundary condition:
gradient is given or d_]; = given

3. periodic boundary condition: link ends together

B IT P # Understanding subduction zone topography
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Implementation of natural boundary
conditions for the heat equation

Flux b.c. at nodal point 0: g = —kd—T =-kc or ar =C
dx dx
Since T, is not explicitly given as b.c., the usual d.e.
. oT  d°T
applies: —=Kk—
ot 0x

Discretize (e.g. with Forward Euler) for i=0:

new old _ old old old ) _ KAt
Ty =Ty = (T =217 + T ) witn r=
What to do with 7,? ®@ O&—0—0— mesh
-1 0 1 2
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Implementation of natural boundary

conditions for the heat equation

dT
-1 Discretization of e =c at end points:
X

-1, _. or T,=T -2Axc
2Ax

2 So now the d.e. becomes:

Tonew Told (Told _2Axc — 2Toold + Tlold)

or
TOnew _ Toold + 7"(27-101(1 _ 27’;)0[0’ _ 2AXC)




Practical 2, Part 3

Natural boundary conditions

Apply to your oceanic lithosphere cooling
model

Replace given T at base of model with
given heat flux from mantle into the
lithosphere

Zero heat flux is simplest: insulating base
of the lithosphere
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