SUBITOP

Understanding subduction zone topography through modelling of coupled shallow and deep processes

- Heat diffusion equation
- □ Timestep stability criterion
- Essential versus natural boundary conditions

Heat diffusion: Fourier's law

Joseph Fourier

Conservation of heat (energy)

$$\frac{dE}{dt} = Q(x) - Q(x + \Delta x)$$

using:

$$E = MC_p T = \rho \Delta x \Delta y \Delta z C_p T$$
$$Q = q \Delta y \Delta z$$

$$\rho C_p \frac{dT}{dt} = \frac{q(x) - q(x + \Delta x)}{\Delta x}$$

Heat conservation and Fourier's law

$$\rho C_p \frac{dT}{dt} = \frac{q(x) - q(x + \Delta x)}{\Delta x}$$

$$q = -k \frac{dT}{dx}$$

$$\rho C_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} (k \frac{\partial T}{\partial x})$$
if $\kappa = \frac{k}{\rho C_p}$ is constant the at diffusivity'

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2}$$

Modelling one point/parameter through time:

■ Modelling N independent points through time:

Modelling N dependent points through time:

Modelling N dependent points through time:

Model an array of data at time *t*, rather than a bunch of independent points

Initial and boundary conditions

- □ Initial conditions need to be provided for every grid point (only at t=0).
- Boundary conditions need to be provided for every time step (only at first and last grid point).

Time derivative \rightarrow finite difference

$$\frac{dT}{dt} = \frac{T(t + \Delta t) - T(t)}{\Delta t}$$
$$\frac{dT}{dt} = \frac{T^{n+1} - T^n}{\Delta t}$$

Spatial derivative → finite difference

$$\frac{dT}{dx} = \frac{T_{i+1} - T_i}{\Delta x}$$

Other ways to calculate derivative:

$$\frac{dT}{dx} = \frac{T_i - T_{i-1}}{\Delta x}$$

$$\frac{dT}{dx} = \frac{T_{i+1} - T_{i-1}}{2\Delta x}$$

$$\frac{dT}{dx} = \frac{T_{i+1/2} - T_{i-1/2}}{\Delta x}$$

$$\Delta x$$

The second-order derivative

$$\frac{\partial T_i^n}{\partial t} \approx \frac{T_i^{n+1} - T_i^n}{\Delta t}$$

$$\left(\frac{\partial T}{\partial t}\right) = \kappa \left(\frac{\partial^2 T}{\partial x^2}\right)$$

$$\frac{\partial^{2} T_{i}^{n}}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial T_{i}^{n}}{\partial x} \right) = \frac{\partial}{\partial x} \left(S_{i}^{n} \right)$$

$$\approx \frac{S_{i+1/2}^{n} - S_{i-1/2}^{n}}{\Delta x}$$

$$\frac{T_{i+1}^{n} - T_{i}^{n}}{\Delta x} - \frac{T_{i}^{n} - T_{i-1}^{n}}{\Delta x}$$

$$\approx \frac{\Delta x}{\Delta x}$$

$$= \frac{T_{i+1}^{n} - 2T_{i}^{n} + T_{i-1}^{n}}{\Delta x^{2}}$$

The second-order derivative

$$\frac{\partial T_i^n}{\partial t} \approx \frac{T_i^{n+1} - T_i^n}{\Delta t}$$

$$\left(\frac{\partial T}{\partial t}\right) = \kappa \left(\frac{\partial^2 T}{\partial x^2}\right) \rightarrow$$

$$\frac{\partial^{2} T_{i}^{n}}{\partial x^{2}} = \frac{\partial}{\partial x} \left(\frac{\partial T_{i}^{n}}{\partial x} \right) = \frac{\partial}{\partial x} \left(S_{i}^{n} \right)$$

$$\approx \frac{S_{i+1/2}^{n} - S_{i-1/2}^{n}}{\Delta x}$$

$$\frac{T_{i+1}^{n} - T_{i}^{n}}{\Delta x} - \frac{T_{i}^{n} - T_{i-1}^{n}}{\Delta x}$$

$$\frac{\Delta x}{\Delta x}$$

$$\frac{T_{i+1}^{n} - T_{i}^{n}}{\Delta x} + T_{i-1}^{n}}{\Delta x}$$

Notation!

Practical 2, part 1:

- Modelling a cooling ocean lithosphere:
 - □ Familiarise yourself with the model and equations using a simple scenario and paper and pencil
 - Complete the model in Python by adding your own subfunction for diffusion
 - Explore how numerical and analytical solutions compare and the effect of different discretisation steps in time and space
 - ☐ If time permits, calculate the growth of the lithosphere with time

Stability criterion: exp. decay function

Stability criterion for Euler forward

□ Differential equation:

$$\frac{dV}{dt} = -aV$$

- □ Discretized solution with error: $V^{new} + \varepsilon^{new} = (V^{old} + \varepsilon^{old})(1 a\Delta t)$
- Subtract solution w/out error:

 $V^{new} = V^{old} (1 - a\Delta t)$

Error in solution:

 $\varepsilon^{new} = \varepsilon^{old} (1 - a\Delta t)$

□ To keep error from growing:

 $-1 < (1 - a\Delta t) < 1$

☐ This restricts time step:

 $\Delta t < \frac{2}{a}$

Stability criterion

- □ a=0.01
- \square so $\Delta t_{crit} = 2/a = 200$ sec.

Stability criterion for Euler backward

□ differential equation:

- discretized solution:
- So error in solution:

- □ To keep error from growing:
- □ Criterion always met!

$$\frac{dV}{dt} = -aV$$

$$V^{new} = \frac{V^{old}}{1 + a\Delta t}$$

$$\varepsilon^{new} = \frac{\varepsilon^{old}}{1 + a\Delta t}$$

$$-1 < \frac{1}{1 + a\Delta t} < 1$$

Practical 2, Part 2

Try for yourself:

- Use your radiogenic heating code:
 - □ Calculate ∆t_{crit}
 - ☐ Increase t_{max} to 100 Gyrs
 - □ Try different Δt
- Use your heat diffusion code:
 - Increase timestep and see what happens

□ Forward Euler time stepping method:

$$\frac{T_i^{new} - T_i^{old}}{\Delta t} = \kappa \left(\frac{T_{i+1}^{old} - 2T_i^{old} + T_{i-1}^{old}}{\Delta x^2} \right)$$

■ So error propagates as:

$$\frac{\varepsilon_{i}^{new} - \varepsilon_{i}^{old}}{\Delta t} = \kappa \left(\frac{\varepsilon_{i+1}^{old} - 2\varepsilon_{i}^{old} + \varepsilon_{i-1}^{old}}{\Delta x^{2}} \right)$$

$$\varepsilon_{i}^{new} = \varepsilon_{i}^{old} + \frac{\kappa \Delta t}{\Delta x^{2}} \left(\varepsilon_{i+1}^{old} - 2\varepsilon_{i}^{old} + \varepsilon_{i-1}^{old} \right)$$

$$\varepsilon_{i}^{new} = r\varepsilon_{i+1}^{old} + (1-2r)\varepsilon_{i}^{old} + r\varepsilon_{i-1}^{old} \quad \text{with } r = \frac{\kappa \Delta t}{\Delta \kappa^{2}}$$

with
$$r = \frac{\kappa \Delta t}{\Delta x^2}$$

- New error ε_i^{new} depends on ε_i^{old} , ε_{i+1}^{old} , and ε_{i-1}^{old}
- These ε^{old} can cancel out or amplify each other.

$$\varepsilon_{i}^{new} = r\varepsilon_{i+1}^{old} + (1-2r)\varepsilon_{i}^{old} + r\varepsilon_{i-1}^{old} \quad \text{with} \quad r = \frac{\kappa \Delta t}{\Delta x^{2}}$$

Let's look at 3 different error scenarios:

$$\blacksquare \quad = \quad \varepsilon_{i}^{old} = -\varepsilon_{i-1}^{old} = -\varepsilon_{i+1}^{old} \text{ so that } \varepsilon_{i}^{new} = (1-4r)\varepsilon_{i}^{old}$$

$$\square \quad \varepsilon_i^{new} = (1 - 4r)\varepsilon_i^{old}$$

■ Avoiding amplification: $\left|1-4r\right| < 1$

i.e.:
$$-1 < 1 - 4r$$
 or $r < \frac{1}{2}$ or $\frac{\kappa \Delta t}{\Delta x^2} < \frac{1}{2}$

So
$$\frac{T_i^{new} - T_i^{old}}{\Delta t} = \kappa \left(\frac{T_{i+1}^{old} - 2T_i^{old} + T_{i-1}^{old}}{\Delta x^2} \right)$$

has following stability criterion: $\Delta t <$

$$\Delta t < \frac{\Delta x^2}{2\kappa}$$

This is a simplified analysis.

The full Fourier analysis referred to as the von Neumann stability criterion.

Example cooling oceanic plate

- □ $\Delta x = 10$ km, $\kappa = 10^{-6}$ m²/s, so $\Delta t < 1.58$ Myr
- Results after 20 time steps of $\Delta t = 1.5 \text{ Myr}$

Example cooling oceanic plate

- □ $\Delta x = 10 \text{ km},$ $\kappa = 10^{-6} \text{ m}^2/\text{s},$ so $\Delta t < 1.58 \text{ Myr}$
- Results after 20 time steps of $\Delta t = 1.7 \text{ Myr}$

Boundary conditions

Possible boundary conditions:

- essential-, or Dirichlet boundary condition:
 f = given (this is what we used so far)
- 2. natural-, flux-, or Neumann boundary condition: gradient is given or $\frac{df}{dx}$ = given
- 3. periodic boundary condition: link ends together

Implementation of natural boundary conditions for the heat equation

- □ Flux b.c. at nodal point 0: $q = -k \frac{dT}{dx} = -kc$ or $\frac{dT}{dx} = c$
- \square Since T_0 is not explicitly given as b.c., the usual d.e.

applies:
$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2}$$

 \square Discretize (e.g. with Forward Euler) for i=0:

$$T_0^{new} - T_0^{old} = r \left(T_{-1}^{old} - 2T_0^{old} + T_1^{old} \right)$$
 with $r = \frac{\kappa \Delta t}{\Delta x^2}$

 \square What to do with T_{-1} ?

Implementation of natural boundary conditions for the heat equation

□ Discretization of $\frac{dT}{dx} = c$ at end points:

$$\frac{T_1 - T_{-1}}{2\Delta x} = c$$
 or $T_{-1} = T_1 - 2\Delta xc$

So now the d.e. becomes:

$$T_0^{new} - T_0^{old} = r \left(T_1^{old} - 2\Delta xc - 2T_0^{old} + T_1^{old} \right)$$
or
 $T_0^{new} = T_0^{old} + r \left(2T_1^{old} - 2T_0^{old} - 2\Delta xc \right)$

Practical 2, Part 3

Natural boundary conditions

- Apply to your oceanic lithosphere cooling model
- Replace given T at base of model with given heat flux from mantle into the lithosphere
- Zero heat flux is simplest: insulating base of the lithosphere